

SIVO/ASTG Coding Standard

Recommended Coding Styles for
Software Development in Fortran,

C++, Java and Python

AstgCodingStandard.doc

Version 1.5

July 31, 2010

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page i

Contents

CONTENTS ... I

1 INTRODUCTION..1

1.1 PURPOSE OF CONVENTIONS...1
1.2 WHY USE CONVENTIONS...1
1.3 WHEN NOT TO USE THESE CONVENTIONS ...1
1.4 WHEN TO USE THESE CONVENTIONS ..1

2 FILES..3
2.1 NAMING FILES ...3

2.1.1 Use Class/Module Name For File Name.. 3
2.1.2 Extensions ... 3

2.2 FILE ORGANIZATION..4
2.2.1 C/C++ Header Files .. 4
2.2.2 C/C++ Source Files ... 4
2.2.3 Fortran Files... 4
2.2.4 Java Files.. 4
2.2.5 Python Files .. 5

2.3 C++ PREPROCESSING...5
2.3.1 Minimal Includes .. 5
2.3.2 Brackets Verses Quotes .. 5
2.3.3 Inclusion Protection ... 5
2.3.4 Avoid Macros.. 6

3 FORMATTING...7

3.1 BLANK SPACE ..7
3.1.1 Blank Spaces... 7
3.1.2 Indentation.. 7

3.2 LINES ...8
3.2.1 Line Length ... 8
3.2.2 Line Continuation ... 8
3.2.3 Single Blank Lines .. 8
3.2.4 Double Blank Lines .. 8

3.3 FORTRAN FREE-FORMAT ...9

4 NAMING ...10

4.1 EXPRESSIVENESS AND SCOPE...10
4.2 ABBREVIATIONS ..10

4.2.1 Avoid Uncommon Abbreviations .. 10

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 2

4.2.2 Use Mixed Case Acronyms ... 10
4.3 CASE AND UNDERSCORES ..10
4.4 NAMING RULES FOR IDENTIFIERS..11

5 DECLARATIONS ...13
5.1 ROUTINES ..13

5.1.1 Verbs for Routines .. 13
5.1.2 Accessors and Mutators.. 13
5.1.3 Avoid Global Routines.. 13

5.2 VARIABLES AND ARGUMENTS ...13
5.2.1 Use Nouns... 13
5.2.2 Proximity of Declaration .. 13
5.2.3 Initialize Variables ... 13
5.2.4 Zero Pointers .. 14
5.2.5 One Declaration Per Line .. 14
5.2.6 Avoid Literals ... 14
5.2.7 Use Booleans for Booleans... 14
5.2.8 Descriptive Namelist Variables .. 14
5.2.9 Avoid Global Variables .. 14
5.2.10 Use Portable Numeric Types .. 15
5.2.11 C++ Casting... 15

Avoid Casting... 15
Use C++ Style Casts... 15

5.2.12 Use Argument Modifiers... 15
5.2.13 Use “Implicit None”... 16

5.3 CLASSES, MODULES AND TYPES ..16
5.3.1 Use Pure Block Layout ... 16
5.3.2 Fortran Derived Types ... 16

Standardized Constructor and Destructor Names .. 16
5.3.3 Use Lowest Possible Scope... 17
5.3.4 Classes .. 18

Group by Accessibility, then Functionality.. 18
Use a Default Constructor .. 18
C++ Standard Copy and Assignment ... 18
C++ Check for Self Copy... 18
Operators .. 18
Virtual Members .. 18

5.4 USE OF EXTERNAL UNITS ..19
5.4.1 Use Explicit Namespace or Use-Module Items .. 19
5.4.2 When To Use Namespaces.. 19
5.4.3 Using “using namespace”.. 19

6 STRUCTURE AND CONTROL ..20
6.1 STATEMENTS ...20

6.1.1 One Statement Per Line .. 20
6.1.2 One Operation Per Statement... 20

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 3

6.2 BLOCKS ...20
6.2.1 Pure Block Layout .. 20
6.2.2 Single Statement Blocks.. 20
6.2.3 Directives.. 21
6.2.4 C++ and Java Case Statements ... 21

Indent Under Cases .. 21
Avoid Dropping Through a Case ... 21
Keep Cases Simple... 21

6.3 CONCURRENCY ..22
6.3.1 OpenMP and MPI... 22

6.4 EXCEPTION HANDLING IN JAVA AND C++ ...22
6.4.1 Use Judiciously... 22
6.4.2 Catch by Reference in C++.. 22
6.4.3 Constructor and Destructor Issues... 22
6.4.4 Re-throw the Same Exception in C++.. 22
6.4.5 Exception Handling in Java ... 23

6.5 PROHIBITED FORTRAN FEATURES ..23

7 COMMENTS..24
7.1 EMBEDDED COMMENTS ...24
7.2 COMMENT MAJOR CODE..24
7.3 USE DESCRIPTIVE COMMENTS ...25
7.4 AVOID END-LINE COMMENTS ..25
7.5 PROXIMITY TO CODE ...25
7.6 SPECIAL COMMENT TAGS ..25
7.7 PYTHON DOCSTRING COMMENTS ..26

8 PRACTICES...28
8.1 NON-STANDARD CONVENTIONS ..28
8.2 BLOCK COPY ...28

9 APPENDIX...29

9.1 REFERENCES AND RESOURCES...29
9.1.1 Fortran Coding Conventions.. 29

ESMF Software Developer’s Guide ...29
European Standards For Writing and Documenting Exchangeable Fortran 90 Code 29
WRF Coding Conventions ...29
ARPS Version 5.0 Coding Standard in Fortran 90...29

9.1.2 Fortran Object Oriented Coding Conventions ... 29
Object-Oriented Programming via Fortran 90/95 ..29
Object-Based Programming in Fortran 90 ...29

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 4

9.1.3 C/C++ .. 29
9.1.4 Java... 29
9.1.5 Python ... 29
9.1.6 Documenting Code ... 30

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 1

1 Introduction

1.1 Purpose Of Conventions
This coding standards document is intended to provide guidance for the selection of names, for-
matting of structures, use of comments and other issues in the development of programs.

1.2 Why Use Conventions
Maintenance is by far the largest development cost in the software’s lifetime. The original author
of software rarely maintains it indefinitely, so the use of good coding conventions can provide
benefits that payoff in the future. Conventions improve readability and maintenance by making
code more uniform, standard and comprehensible by different readers.

While a good development environment (IDE), such as Eclipse, can improve the readability of
code by automatic formatting, the programmer should never rely on such features. Source code
should always be written in a way that maximizes its readability, independent of any IDE.

“Programs must be written for people to read, and only incidentally for machines to execute.”

 —Abelson & Sussman, Structure and Interpretation of Computer Programs

1.3 When NOT To Use These Conventions
1. Customer’s preference: The coding style for a legacy code shall be followed when the

code is owned by another organization that requires the use of their style. Inquire before
assuming that we may or may not use our coding standard.

2. Existing code: Existing legacy code shall not be converted to fit this standard. Extensive
rewriting of legacy code to match a new style takes time and can introduce new bugs.
The use of automated tools is preferred if a style conversion is desired. Legacy code that
is being modified shall also not be updated to fit this standard. Mixed, inconsistent styles
within a file can be more confusing than a weak style alone. An exception is made if the
change is easy, consistent throughout and improves the readability of the code. In some
cases the alterations are significant enough to rewrite a large portion of the file. When
that occurs, a judgment call should be made by the developer to convert the entire file to
the new style.

3. Extending a framework: A framework that is extended from a third party shall use the
naming conventions used in that framework. This maintains a basic consistency with that
framework and clearly indicates that the code is part of that framework. However, other
conventions from the coding standard that do not necessarily have to do with names can
be followed in this case.

1.4 When To Use These Conventions
These coding conventions shall generally apply only to code that is newly developed.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 2

1. New files: This coding standard shall only be followed when starting new files. This
applies to both new projects and significant modifications to legacy code. Each file can
be treated as a consistent unit of coding style.

2. Simple changes: Good programming practices (e.g. such as using implicit none)
may be applied to files when the change is simple. Additionally, if the codebase is rela-
tively small at this point, it could make sense to convert it to the new style.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 3

2 Files

2.1 Naming Files

2.1.1 Use Class/Module Name For File Name
• File names shall generally use the same name as the class/module they implement.

• Files with multiple classes or modules per file should be avoided for most cases (yes,
even for Python).

• Unit testing files, used in frameworks such as FUnit, JUnit, or CppUnit, must include the
“test” prefix required by the framework.

• Fortran: Fortran filenames shall include the “_mod” suffix from the module.

2.1.2 Extensions
Source file extensions shall be named according to the following list. Exceptions apply in cases
where the compiler or operating system has issues with the convention or the original project uses
another convention:

C source file .c

C header file .h

C++ source file .cpp

C++ header file .h

Fortran header file .h

Original Fortran-90/95
source file (requires pre-
processing of #directives)

.F90

Processed Fortran-90/95
source file (without pre-
processing directives)

.f90

Java source file .java

Python source file .py

Examples:

• Fortran module SomeModule_mod: SomeModule_mod.F90
Associated test module: testSomeModule_mod.F90

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 4

• C++ class SomeClass: SomeClass.h and SomeClass.cpp

2.2 File Organization
Files shall be organized so that information appears in a standard order. The standard code tem-
plates are recommended for starting new code.

The following files shall contain the elements in this order:

2.2.1 C/C++ Header Files
1. Standard ASTG comment header

2. Inclusion protection directive

3. Include files

4. Global and file scope identifiers (except classes)

5. Class interface

6. Inline functions

2.2.2 C/C++ Source Files
1. Standard ASTG comment header

2. Include files

3. Global and file scope identifiers (except classes)

4. Class implementation

2.2.3 Fortran Files
1. Standard ASTG comment header

2. program, module, procedure, function

3. use module statements

4. implicit none declaration

5. private (as default; public entities are declared explicitly)

6. Include files

7. Variable declarations (dummy arguments may appear before includes, then locals)

8. Source code

9. contains block

2.2.4 Java Files
1. Standard ASTG comment header

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 5

2. Optional package directive

3. Zero or more import directives

4. Class implementation

2.2.5 Python Files
1. #!/usr/bin/python or #!/usr/bin/env python (preferred)

2. Standard ASTG comment header (docstring format preferred)

3. Zero or more import directives

4. def or class

5. Docstring* comment for all public routines using """triple double quotes"""

6. Code implementation

*Docstrings should explain how to use the code, whereas normal comments describe why
and how the code works.

2.3 C++ Preprocessing

2.3.1 Minimal Includes
The header shall only contain the include files necessary to successfully compile the header in a
particular source file. All other include files belong in source files. This lowers compile time and
may reduce the size of the library.

2.3.2 Brackets Verses Quotes
Include files that are used as part of the same file package shall use the #include "..."
form. External include files shall use the #include <...> form.
// MyClass.cpp

#include "MyClass.h"
#include <vector>
#include <sys/types.h>

2.3.3 Inclusion Protection
Include files shall use inclusion protection in the following manner:

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 6

#include "MyClass.h"

#ifndef MYCLASS_H
#define MYCLASS_H

// code here

#endif // MYCLASS_H

2.3.4 Avoid Macros
Constants and inline functions shall be preferred over the use of a macro.
#define DEFAULT_NAME "Noname"
#define SET_NAME(name)
 // ...

// This is a better solution:
static const char* DEFAULT_NAME = "Noname";
inline void setName(const char* name) {
 // ...
}

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 7

3 Formatting

Code should be formatted in such a way that a new person can pick up the code and quickly un-
derstand it. The use of whitespace can improve readability by visibly separating sections of code.

3.1 Blank Space

3.1.1 Blank Spaces
Blank spaces shall be used in the following circumstances:

1. After a keyword that is followed by a parenthesis (but not after a method name)
while (true) { // space after while
 doSomething(); // not after function name!
}

2. After a comma or semicolon in a loop or arguments in a list
do i = 1, 100 ! space after loop comma
 ...
end do

3. Between binary operators, including =, except: . and -> (but not required around the
‘=’ when defining a default parameter value)
! spaces around =, + and *
newArea = ((len + lenIncrement) * width)
newVolume = doSomething(arg1, arg2, arg3=defaultValue)

4. After a pointer or reference declaration
char* name = "noname"; // space after * not before
Object& o = new Object(); // space after & not before

Blank spaces shall never separate increment ++ and decrement -- operators from their operands
for (index = 0; index < maxNum; index++) {
 ...
}

3.1.2 Indentation
The following rules shall apply to indenting code:

1. Tabs shall not be used to indent code as the definition of tabs can vary across environ-
ments and can make code nearly unreadable. Configure your editor to replace tabs with
spaces.

2. Spaces shall be used for all indentation to ensure the proper alignment of code between
editors.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 8

3. Each level of indentation shall be three (3) spaces for Fortran code and four (4) spaces for
Java, C++, and Python code. The difference is mainly due to historical convention and
the general consensus among the developer community.

3.2 Lines

3.2.1 Line Length
Lines should be limited to eighty (80) characters. This will allow readable printouts, plus, it en-
ables side-by-side coding windows without disruptive line wrapping.

Lines may extend beyond 80 characters in special circumstances; however, lines that would ex-
ceed 132 characters must always be put on multiple lines.

3.2.2 Line Continuation
For lines that must be continued, developers may use their own style. The indentation for the
broken lines shall at least be aligned on the left side. The preferred place to break around a binary
operator is after the operator, not before it.

Fortran: Continuation characters (&) shall be used both at the end of the last line and the begin-
ning of the next line. The continuation characters should generally be aligned, when feasible.

print*,'This long statement is going to be continued on the &
 &following line'

Python: Continuation characters (\) may be used at the end of the line, though Python’s implied
continuation inside parentheses, brackets, and braces is preferred.

print ('This long statement is going to be continued on the '
 'following line')

3.2.3 Single Blank Lines
Single blank lines should be used in the following circumstances:

1. Before comments

2. Between methods

3. Before logical sections of code inside a routine

3.2.4 Double Blank Lines
Double blank lines should be used in the following circumstances:

1. Between classes, interfaces and modules

2. Between the major sections of a source file

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 9

3.3 Fortran Free-Format
Code shall be written in free-format syntax. This is the preferred way to code in modern lan-
guages since it is easier to format naturally and read.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 10

4 Naming

The use and arrangement of identifiers is similar to comments because it makes code easily rec-
ognizable and readable. Self-describing code needs fewer comments because the code explains
itself.

4.1 Expressiveness and Scope
Identifiers with larger scope shall have more expressive names since they are useable in a larger
body of code. Using i, j, k for temporary variables in for/do loops is generally acceptable
when the loop is not long.
subroutine recordDatabase(i, currentRec)
 integer, intent(in) :: i ! large scope, not acceptable!
 integer, intent(out) :: currentRec ! much better

4.2 Abbreviations

4.2.1 Avoid Uncommon Abbreviations
Abbreviations, especially for class and types, shall be avoided since they are more difficult to
recognize. Commonly used abbreviations are acceptable, such as: min, num, temp, etc.

4.2.2 Use Mixed Case Acronyms
• Acronyms should be avoided if at all possible.

• Use all upper case letters for the acronym. Put underscores between the acronym and
other capital letters.

• If the identifier needs to start with a lower case letter, such as in a variable name, then use
all lower case letters for the acronym. Do not use an underscore after the acronym.

Examples:
ESMF_URL_String
getXML_String()
esmfFilename

4.3 Case and Underscores
• Identifiers (and keywords) should be named consistently across programs and among de-

velopers.

• Underscores should be used only when necessary, such as in the use of all capital letters
or when the word may become unclear.

• Fortran: Optional parameters with default values shall use an underscore at the end to
differentiate the local variable used to assign it a value.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 11

subroutine foo(someValue)
 integer, optional, intent(inout) :: someValue
 integer :: someValue_

 someValue_ = defaultValue
 if (present(someValue)) someValue_ = someValue
 ...
end subroutine foo

• C++ or Java: Conflicting variable names shall be avoided. Using a local variable or
method parameter with the same name as a class’s member variable can be confusing. If
this is preferred on occasion, such as in the use of a constructor or mutator parameter,
then use an underscore at the end of the parameter.
Class SomeClass {
 public:
 // Avoiding the same parameter:
 void setSomeNumber(int initSomeNumber) {
 someNumber = initSomeNumber;
 }
 // Using an underscore:
 void setSomeNumber(int someNumber_) { someNumber = someNumber_;)
 private:
 int someNumber;
};

4.4 Naming Rules For Identifiers
The following table describes how different program elements shall be named:

Identifier Naming Rule Examples

Keywords Use all lower case letters program, for, switch

Modules Mixed case letters that use capitals letters
for each word. (Fortran: end with the
suffix “_mod”.)

ShallowWater_mod
LightningPhysics_mod

Namespaces Mixed case, starting with capitals letters
for each word.

Math
GridToolKit

Classes,
Interfaces, and
Exceptions

Mixed case, starting with capitals letters
for each word.

SystemPrinter
GridPoint
ESMF_Initialize
NullPointerException

Test Modules
and Classes

Test code should start each name with
“test” to remain compatible with unit
testing frameworks, such as CppUnit and
pFUnit.

testGridPoint
testShallowWater_mod
testAsyncIO_mod

Variable Types Mixed case, starting with capital letters
for each word (don’t end with “_type”)

PrintCode
GridBoundary

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 12

Methods and
Subroutines

Mixed case, starting with a lower case
letter. First word is normally a verb.

getJobCount()
hasNextRecord(numRec)

Test Methods
& Subroutines

When writing test code for unit testing
frameworks, prefix each method name
with “test”, followed by mixed case .

testGetJobCount()
testHasNextRecord()

Variables Mixed case, starting with a lower case
letter.

jobCount
currentJobNum
gmiURL_String

Constants Constant values shall be all capitals, with
underscores between words.

MAX_JOBS
BUFFERS_AVAILABLE

Enumerations All capitals, with underscores between
words.

COLOR_RED
JOB_STATUS_NORMAL

Directives All capitals, with underscores between
words.

Pre-existing directives, such as OpenMP,
will comply with their own required style.

HAS_FORK

Python only:
Private routines
and variables

Use a leading underscore (single or dou-
ble) for internal variables, methods, and
functions to protect from being imported.

_someNumber

__internalFunction()

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 13

5 Declarations

5.1 Routines

5.1.1 Verbs for Routines
Routines shall begin with a verb, preferably a strong action verb. Avoid the use of generic terms,
like “process” by being more specific about what the process actually is doing.
subroutine parseMessage(inputMessage)

5.1.2 Accessors and Mutators
Accessor and mutator functions shall begin with get, set and is. Optionally, has may be
used for testing Boolean possession, as opposed to a Boolean condition.

5.1.3 Avoid Global Routines
Routines that are global can often be placed inside of a related class or module to avoid naming
collisions.

C++ and Python: They might also be placed in a namespace. This avoids polluting the global
namespace.

5.2 Variables and Arguments

5.2.1 Use Nouns
Variables and arguments shall be named with nouns since they represent a thing or quantity.

5.2.2 Proximity of Declaration
C++ and Java: Variables shall be declared just before the block of code where they are used, in-
stead of the top of the method.
void updateRecord() {
 bool isDone = false; // don’t declare here, before isDone is needed!
 //...

 bool isDone = false; // better
 while (isDone == false) {
 //...

5.2.3 Initialize Variables
All variables must be explicitly initialized before use, avoiding problems with the assumed value
of uninitialized variables.

C++, Java, and Python: Variables shall always be initialized where they are declared, or shortly
thereafter.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 14

5.2.4 Zero Pointers
Pointers that have not been allocated or have been deallocated in C++ shall be set to a null value.
This reduces double delete and wild pointer bugs.

5.2.5 One Declaration Per Line
Multiple declarations per line shall be avoided, unless the variables are very tightly coupled. The
use of multiple lines encourages comments and improves readability.
integer :: sendCount, recvCount ! okay, tightly coupled
integer :: printJob

5.2.6 Avoid Literals
Constants shall be used instead of literal constants. Literals (a.k.a. Magic Numbers) in the code
should be avoided. An exception is made for -1, 0, 1 and 2 if used as looping values or in basic
math.

5.2.7 Use Booleans for Booleans
Boolean values shall be used when available in the language, rather than “0” or “1”. Constants
shall be defined as “true” and “false” when a Boolean type is unavailable in the language.

5.2.8 Descriptive Namelist Variables
Fortran: Namelist variables shall avoid using numeric literals (with the possible exception of 0
and 1). Strings are preferred since they provide a much better description of the options.

5.2.9 Avoid Global Variables
Global variables shall not be used. There are times when globally accessible variables are useful.
However, global variables hinder code reuse, are difficult to modify access (such as adding error
checking) and are not easily converted into an abstract type.

Use a function inside a module, related class, or namespace instead of a global variable.

Refer to the Singleton pattern if a global class is needed.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 15

// Don’t use globals like this!
static Printer* g_Printer = new Printer();

// Instead you might use an accessor that wraps the global.
inline Printer* getPrinter() {
 // NOTE: inline statics only ever create one instance
 static Printer* printer = new Printer();
 return printer;
}

5.2.10 Use Portable Numeric Types
C++: The use of portable type definitions shall be used in programs to enhance portability. Un-
fortunately, C-style numeric types like int can represent any size value (16 bit, 32 bit, 64 bit,
etc.)

Use “inttypes.h” file types (e.g. int32_t) to maintain platform-independent implementations.

5.2.11 C++ Casting

Avoid Casting
The use of void* in the public interface functions shall be avoided. It is acceptable to use them
in the implementation, but they should generally be avoided if possible. Instead, prefer the use of
templates to obtain the benefits of type safety.

Use C++ Style Casts
The newer C++ style operators (static_cast, dynamic_cast, const_cast,
reinterpret_cast) shall be preferred in situations requiring casting. These operators offer
significantly more precision and safety in operations requiring casting.

5.2.12 Use Argument Modifiers
C++: The modifiability of each argument passed by reference (including pointers) shall be speci-
fied using const for read-only variables.

Fortran: The intent of each argument (i.e. in, out, inout) shall be specified before each ar-
gument in a routine.
subroutine updateSurfaceAreaDensity(const, initNum, finalCond)
 implicit none
 integer, intent(in) :: initNum
 real*8, intent(out) :: finalCond

 ! ...

end subroutine updateSurfaceAreaDensity

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 16

5.2.13 Use “Implicit None”
Fortran: implicit none shall be at the top of all program units to ensure that variables are
explicitly declared, documented, and type checked. It is the default in module functions if de-
clared at the top of the module.

5.3 Classes, Modules and Types

5.3.1 Use Pure Block Layout
Pure block layout shall be used to layout a class or module. Pure block uses (1) one line to des-
ignate a block opening, (2) one or more indented lines for the internal block and (3) one line for
closing the block.

Class and module modifiers, like public, private and implicit none, shall also be in-
dented, with the exception of contains.
class BankAccount {
 public:
 float getBalance();
 //...
};

class BankAccount // Also OK to put open/close braces in the same column
{
 public:
 float getBalance();
 //...
};

module BankTransaction_mod
 public creditAccount
 implicit none

contains
 subroutine creditAccount(account)
 !...
 end subroutine creditAccount
end module BankTransaction_mod

5.3.2 Fortran Derived Types

Standardized Constructor and Destructor Names
Creating a variable of a derived type loosely corresponds to creating an object of a particular class
in C++/Java. This is a desirable feature from object-oriented languages, but currently Fortran
cannot support C++-style constructor and destructor syntax. Until that happens, the following
naming conventions shall be used for derived type constructors and destructors.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 17

Type name: Foo
Module name: Foo_mod
Constructor name: createFoo
Destructor name: destroyFoo

PLEASE NOTE: Fortran 2003 will support routine names that are the same as derived-type
names. When the new compilers are available, the constructor’s “create” prefix will be
dropped from this standard.
module Foo_mod
 ...
 type Foo
 integer :: windDirection ! degrees, clockwise from North
 real :: windSpeed ! in kts, 6m above the surface
 end type Foo

contains

 function createFoo() result(this)
 type(Foo) :: this
 ! Initialize data values
 this%windDirection = 0
 this%windSpeed = 0
 end function createFoo
 ...
end module Foo_mod

If any memory had been allocated in createFoo, the destructor destroyFoo would be used to deal-
locate that memory.

5.3.3 Use Lowest Possible Scope
Elements within an abstract type, such as variables and routines, should kept be as private as pos-
sible, while still allowing the users of those items to perform their work. Public member vari-
ables of a class or module shall be avoided. Instead, get and set methods should be used to ac-
cess and change the variable outside the class or module. This enables the benefits of encapsula-
tion.

This also applies to Fortran derived types, which shall use the private modifier to restrict the
public interface of a type.
type Foo
 private ! good – explicitly declare public elements
 integer :: xGridSize ! only this module can read and modify
end type Foo

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 18

5.3.4 Classes

Group by Accessibility, then Functionality
Classes, modules and members shall be primarily grouped with the most public elements appear-
ing earliest in the file and the most private elements appearing later in the file. Since the public
interface is the most important it should be easiest to locate. Related elements should also be
grouped according to functionality.

Classes or methods within a class or module shall be grouped according to functionality. This is
consistent with keeping related and tightly coupled code grouped together.

Use a Default Constructor
A default constructor shall always be provided. Classes that do not support default construction
should declare the constructor protected or private.

C++ Standard Copy and Assignment
Copy constructors and assignment operators shall use the argument “other” to identify the ob-
ject being copied.
class A {
 public:
 A(const A& other);
 A& operator=(const A& other);
};

C++ Check for Self Copy
The assignment operator shall always check for self-copy. This can cause problems when the
object deallocates memory in preparation for copy.
A& A::operator=(const A& other) {
 if (this != other) { // avoid self-copy problems!
 // ...
 }
 return this;
};

Operators
Overloaded operators shall be avoided in most circumstances. They can add confusion in some
circumstances.

Virtual Members
The destructor shall be declared virtual once any function becomes virtual.

The virtual modifier shall always be repeated in virtual functions for members of subclasses.
This makes it clear to the reader that the function is actually virtual.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 19

5.4 Use of External Units

5.4.1 Use Explicit Namespace or Use-Module Items
When introducing items from a namespace or module, prefer to explicitly identify the entity you
want to use. This helps to easily identify the origin of the item. If the module is commonly used
(such as the C++ “std” namespace), or there are a large number of items to use, then it may be
preferable to include the whole unit.
use Foo_mod, only: startBar1, stopBar ! good, identifies methods precisely
use Foo_mod ! bad, where do Bar methods come from?

5.4.2 When To Use Namespaces
C++: User-defined namespaces shall be used in larger programs to:

• Simplify the use of names in a program

• Prevent name clashes (e.g. enumerated types that use the same value)

• Group related program components (e.g. classes, global functions) into logical modules

5.4.3 Using “using namespace” Clause
C++: The using namespace clause shall not be used in a header file. This pollutes any
source files that use the header with the entire namespace. Instead, use the “::” scope operator
with the actual namespace.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 20

6 Structure and Control

6.1 Statements

6.1.1 One Statement Per Line
Multiple statements per line shall be avoided. The use of one statement per line gives a better
indicator of program complexity, makes it easier to follow top-to-bottom, trace execution and
locate compiler errors.

6.1.2 One Operation Per Statement
Statements that try to perform several operations into a single statement, such as a side-effect,
shall be avoided. These make it more difficult to modify code and more difficult to understand.
// side effects! -- errorCode and recNum are changed during a conditional
if ((errorCode = insertRecord(++recNum)) == SUCCESS)
 //...

// solution without side-effects
++recNum;
errorCode = insertRecord(recNum);
if (errorCode == SUCCESS)
 //...

This does not mean that a chain of math operations must be one math operation per line. Math
operations should be kept together if they are readable.

6.2 Blocks

6.2.1 Pure Block Layout
Pure block layout shall be used to layout a block of statements. Each sub-block shall be indented
another level Refer to section 5.3.1 for a description of pure block layout.
do i = 1, 100
 statement1
 statement2
 if s
end do

6.2.2 Single Statement Blocks
C++: Single statement blocks shall be formatted consistently. If one part of a block uses a clos-
ing line, then all parts of the block should use closing lines. Caution should be exercised with
if/else statements that do not use braces and nested blocks that mix styles as this can lead to
bugs.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 21

// Be consistent! This if has no closing brace, while else does.
if (hasRecs)
 statement1;
else {
 statement2;
 statement3;
}

6.2.3 Directives
Directives shall be indented with the code.
void displayDebugMessage(char* msg)
 writeToLog(msg);

 // also write to screen if debug mode
 #ifdef _DEBUG
 cout << msg << endl;
 #endif
}

6.2.4 Case Statements (except in Python)

Indent Under Cases
switch (select in Fortran) statements shall be formatted with each case statement indented
one level and code for each case indented to a second level. This keeps code easily readable for
each case.
switch (userAction) {
 case MOVE_MOUSE:
 updateMousePosition();
 showMouseCursor();
 break;
 case EXIT:
 closeAllWindows();
 shutdownSystem();
 break;
}

Avoid Dropping Through a Case (N/A in Fortran)
Each case shall always have a break; case statements without a break statement fall through to
the next case. This may seem useful in some circumstances, but the code is more difficult to un-
derstand because two different control constructs are overlapped. Code modification is also more
difficult without breaking each of the existing cases.

Add a Default Case
In most situations, add a default case to ensure all error conditions are handled properly. There
may be some instances where a default is unnecessary, but if there is a possibility the current or
future code could create an error condition, a default case should be added.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 22

Keep Cases Simple
Code under each case should not be complicated or lengthy. If it is, then consider moving code
under the case to a routine and invoking it from the case statement.

6.3 Concurrency

6.3.1 OpenMP and MPI
• OpenMP code shall use Default(none) and explicitly declare modifiers.

• MPI code shall avoid the use of MPI_COMM_World in situations that allow grouped
processes. This will simplify design and encourage inter-process safety.

• MPI code shall prefer use MPI over include "mpif.h" to aid in the automatic de-
tection of wrong usage of the interface to the MPI library.

6.4 Exception Handling in Java and C++

6.4.1 Use Judiciously
Exceptions shall be applied only in cases where error conditions occur that would not happen
normally. For example: reading the end-of-file from a file is not an exception since it is occurs
normally. Exception handling in can be a complicated undertaking, especially in C++, however it
offers a more elegant solution in many cases. Exceptions should generally be preferred over error
code returns.

6.4.2 Catch by Reference in C++
Are exceptions caught by reference to avoid the question of deletion responsibility and prevent
duplicate copying and slicing?

6.4.3 Constructor and Destructor Issues
Exceptions shall not be raised inside the constructor of an exception as an infinite loop situation
could occur. Likewise, destructors shall not let exceptions leave the destructor.

6.4.4 Re-throw the Same Exception in C++

Exceptions shall be re-thrown using plain throw as opposed to throw anException to
avoid recopying the object.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 23

try {
 //...
} catch (SomeException& ex) {
 throw; // good
 throw ex; // causes a copy to be thrown
}

6.4.5 Exception Handling in Java
Since Java will always throw an exception when encountering an error, each error should be
caught to provide useful error messages. Java also includes an optional finally keyword,
which will always be executed, and can assist in necessary cleanup.
try {
 someResource.UseResource();
} catch (MyException e) {
 // handle my exception
} catch (Throwable e) {
 // handle all other exceptions
} finally {
 someResource.dispose(); // special cleanup
}

6.5 Prohibited Fortran Features
Certain Fortran features have been deprecated by the Fortran-90 standard and are deemed to be
poor programming practices. The following list of features shall be avoided:

Feature Replacement
common blocks Modules

Equivalance Derived data types

Use of pointers is okay, but generally
avoid.

This feature may be useful in situations.

Assigned and computed go to case construct

Arithmetic if statements block if construct

Numeric statement labels (exception: block-
style labels for loop control are permitted)

Pause

entry statements

All other deprecated features

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 24

7 Comments

Comments aid the reader of the code. Comments can be used to (1) summarize a section of code,
(2) describe the intent of the code or (3) indicate something special about the code. There are no
hard-and-fast rules for how many comments must be used. Self-documenting code that uses clear
variable names and good formatting would require fewer comments.

7.1 Embedded Comments
Programs shall use embedded comments as appropriate for extraction by a tool. This makes it
much easier to keep the documentation consistent with the source code. The following tools shall
be used:

• Fortran: ProTeX or Doxygen
• C++: Doxygen
• Java: Doxygen or Javadoc
• Python: Doxygen (can parse docstring format)

Doxygen has become the tool of choice, due to its versatility and widespread popularity. Doxygen
will extract comments and tags from the source code and create hyper-linked reference documen-
tation in multiple formats. In C++ or Java, a simple class prologue might look like this:

/**
 * @brief Example class to demonstrate basic Doxygen usage
 * @author I. M. Coder
 *
 * This is a simple class to demonstrate how Doxygen is used.
 * It shows how the special double asterisk comment begins a comment
 * block, and how both short and long descriptions are defined.
 */

Complete documentation is available at www.doxygen.org. For an examples of usage here at
SIVO, refer to the code templates in Modeling Guru's Software Development community, or see
Using Doxygen with Fortran Source Code.

7.2 Comment Major Code
The public interface should be well documented for those trying to use the code, while the im-
plementation should be well documented for those trying to maintain the code. Examples of how
to properly use code can be helpful if it is not obvious. Obvious code, such as getter and setter
methods, does not necessarily need to be commented.

Comments and rules shall apply for the following table of major code items:

Code Placement Rule Description Rule

File, Module Top Standard comment heading describing the purpose of
the code

Class Before the class
definition

Description of the purpose of the class

Indicate the level of thread safety if appropriate

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 25

Routine,
method

Before the routine
implementation
and throughout the
routine

Description of the routine

Identify special pre-conditions and post-conditions,
such as the deallocation of memory returned from the
routine

Implementation and algorithm details go throughout
the routine

Variable,
member

Before or on the
same line

Brief description of the variable, including units

7.3 Use Descriptive Comments
Comments should add something useful to the code.

• Comments shall not repeat code.
! update empRec <-- poor comment
! get current employee information <-- good comment

• Comments shall prefer to describe “why” or intent over “what” or paraphrasing.
! divide vector by length <-- poor comment
! normalize vector for use in transformations <-- good comment

7.4 Avoid End-line Comments
• End-line comments shall be avoided since they are harder to see, maintain and must be

kept short.

• End-line comments may be appropriate for short variable descriptions and for marking
the ends of code blocks. The comments shall be aligned for each group of end-line
comments.
 ! comments are aligned:
integer :: gridWidth ! number of parcels across
real*8 :: parcelSize ! meters of each square

7.5 Proximity to Code
Comments shall be placed as close as possible to the code they describe. Comments that are
closer are more useful to the reader and more likely to be maintained.

7.6 Special Comment Tags
The special comments listed below shall be used to tag code in certain conditions.

• TODO - code is incomplete and will be completed later. This code should indicate a
warning when executed

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 26

do while (reportCount > 0)
 ! TODO: process next report here
 print*, "TODO: process reports"
 reportCount = reportCount - 1
end do

• FIXME - code has a logical error and requires correction. This code should abort or
throw an exception when executed.

• NOTE - a special circumstance applies and should be noted by anyone modifying or re-
viewing this section of code. This may indicate “surprise” code that does not work as
expected or a deviation from the standard.

7.7 Python Docstring Comments
Docstrings, which are comments using """triple double quotes""", should be written for
all public modules, functions, classes, and methods in Python. Docstring comments should appear
immediately after the "def" line, and should describe code usage, including descriptions of the
arguments and outputs. Implementation details should be put into standard block comments.
 A docstring can be extracted automatically through the __doc__() member of the object, and is
available at runtime as an attribute of the object. Most IDEs will display them as context-
sensitive “usage” tooltips, and Doxygen can extract them to auto-build documentation.

There are two forms of docstrings: one-liners and multi-line. The one-line version can be used for
simple routines, and uses the same indentation as the rest of the function:

def factorial(n):
 """Returns the factorial of n"""
 while factor <= n:
 result *= factor
 factor += 1
 return result

The multi-line version begins with one line summary, followed by a blank line, and then a more
elaborate description of the interface:

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 27

def readSurfaceTemp(fileName, minLat, maxLat, minLon, maxLon, tempArray):
 """Read in a portion of the surface temperature field from file

 Args:
 fileName: filename of temperature field, including full path
 minLat, maxLat: minimum/maximum latitude of field in degrees
 minLon, maxLon: minimum/maximum longitude of field in degrees

 Returns:
 tempArray: a 2-D array of temperatures within the given range of
 latitude and longitude

 Raises:
 IOError: An error occured accessing the given temperature file
 """
 ...

For multi-line docstrings, the final set of quotes must be on its own line.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 28

8 Practices

8.1 Non-Standard Conventions
C++: Non-standard language constructs and implementation dependencies beyond those speci-
fied by the ISO/ANSI C++ draft standard shall be approved by the team lead. This will reduce
problems when code must be ported to another platform.

Fortran: The same principle applies to machine-specific features of Fortran, which should be
avoided if possible. If this is not possible, the code shall be commented clearly to indicate the use
of the machine-specific feature.

8.2 Block Copy
Copying blocks of code elsewhere in a program shall be avoided. Blocks of repeating code are an
indicator of the need for a routine. Move the code into a routine and call the routine from each
original location.

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 29

9 Appendix

9.1 References and Resources

9.1.1 Fortran Coding Conventions
ESMF Software Developer’s Guide

http://www.esmf.ucar.edu/documents/dev_guide/dev_guide.html

WRF Coding Conventions

http://www.mmm.ucar.edu/wrf/WG2/WRF_conventions.html

ARPS Version 5.0 Coding Standard in Fortran 90

http://www.caps.ou.edu/ARPS/arpsdev.html

EnergyPlus Programming Standard

http://www.eere.energy.gov/buildings/energyplus/pdfs/programmingstandard.pdf

9.1.2 Fortran Object Oriented Coding Conventions
Object-Oriented Programming via Fortran 90/95

assets.cambridge.org/052152/4083/sample/0521524083ws.pdf

Object-Based Programming in Fortran 90

www.ccs.lanl.gov/CCS/CCS-4/pdf/obf90.pdf

9.1.3 C/C++
The Elements of C++ Style

Taligent’s Guide to Designing Programs

http://pcroot.cern.ch/TaligentDocs/TaligentOnline/DocumentRoot/1.0/Docs/books/WM/WM_3.ht
ml

9.1.4 Java
Sun’s Code Conventions for the Java Programming Language

http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.htm

9.1.5 Python
Style Guide for Python Code

NASA SIVO -

AstgCodingStandard_v1.5.doc (08/04/10) Page 30

http://www.python.org/dev/peps/pep-0008/

Python Style Guide

http://code.google.com/p/soc/wiki/PythonStyleGuide

*Note: ASTG standards differ somewhat from the above guides.

9.1.6 Documenting Code
ProTeX (Fortran)

http://gmao.gsfc.nasa.gov/software/protex/

Doxygen (C++, Java, Fortran, & Python)

http://doxygen.org

Javadoc (Java)

http://java.sun.com/j2se/javadoc/

